Long cycles in bipartite tournaments

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the existence of specified cycles in bipartite tournaments

For two integers n ≥ 3 and 2 ≤ p ≤ n, we denote D(n, p) the digraph obtained from a directed n-cycle by changing the orientations of p − 1 consecutive arcs. In this paper, we show that a family of k-regular (k ≥ 3) bipartite tournament BT4k contains D(4k, p) for all 2 ≤ p ≤ 4k unless BT4k is isomorphic to a digraph D such that (1, 2, 3, ..., 4k, 1) is a Hamilton cycle and (4m+ i− 1, i) ∈ A(D) a...

متن کامل

Complementary cycles containing a fixed arc in diregular bipartite tournaments

Let (x, y) be a specified arc in a k-regular bipartite tournament B. We prove that there exists a cycle C of length four through (x, y) in B such that B-C is hamiltonian.

متن کامل

A sufficient condition for Hamiltonian cycles in bipartite tournaments

We prove a new sufficient conditi()n on degrees for a bipartite tournament to be Hamiltonian, that is, if an n x n bipartite tournament T satisfies the condition dT(u) + dj;(v) ~ n 1 whenever uv is an arc of T, then T is Hamiltonian, except for two exceptional graphs. This result is shown to be best possible in a sense. T(X, Y, E) denotes a bipartite tournament with bipartition (X, Y) and verte...

متن کامل

Long cycles in unbalanced bipartite graphs

Let G[X,Y ] be a 2-connected bipartite graph with |X| ≥ |Y |. For S ⊆ V (G), we define δ(S;G) := min{dG(v) : v ∈ S}. We define σ1,1(G) := min{dG(x) + dG(y) : x ∈ X, y ∈ Y, xy / ∈ E(G)} and σ2(X) := min{dG(x) + dG(y) : x, y ∈ X,x 6= y}. We denote by c(G) the length of a longest cycle in G. Jackson [J. Combin. Theory Ser. B 38 (1985), 118–131] proved that c(G) ≥ min{2δ(X;G) + 2δ(Y ;G)− 2, 4δ(X;G)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1996

ISSN: 0012-365X

DOI: 10.1016/0012-365x(94)00273-l